HEAT CONDUCTIVITY OF A BODY WITH VARIABLE
HEAT EXCHANGE COEFFICIENT

B. Ya. Lyubov and N. I, Yalovoi UDC 536.2.01

The heat conduction problem for a half-space and a plate with a time dependent coefficient
of heat exchange is solved, The solution is obtained by the combined utilization of an op-
erational and a successive approximations method,

A special class of heat conduction problems with variable thermophysical coefficients, problems with
a time-dependent heat exchange coefficient, exists, It is meaningful to examine these problems in the case
when the heat exchange coefficient depends considerably more essentially on the time than on the tempera-
ture or coordinates, The process of heat exchange of a metal being rolled with beams and a surrounding
medium is an example. During the pass the coefficient of heat exchange between the metal and the beams
has the order of magnitude 5000 W/m?* deg [1]. As a rule, the time the metal is on the beams does not ex~
ceed 0.1 sec, The coefficient of heat exchange between the metal and the surrounding medium between
passes has a magnitude of around 200 W/m?-deg. The time between passes does not exceed several tens
of seconds. Itis conceivable that the dependence of the heat exchange coefficient on the temperature of the
metal surface can be neglected during such short time intervals. The time dependence of the heat-exchange
coefficient is considerably more essential.

Besides the technological reasons for the time change in the heat-exchange coefficient there is a num-
ber of others, namely: the change in the physical characteristics of the heat carrier (the velocity of motion,
the degree of blackness, the density, etc.) or the time change in the state of the surface of thie body being
heated (oxidation, dust contamination, fissuring, etc.).

1. Semi~Infinite Body. Let us consider the temperature of the surrounding medium to be constant T¢.
The heat-exchange coefficient on the boundary of the half-space is time dependent. Let us assume that this
dependence can be approximated by the series

Coa(l) = i a, exp(— b,f). 1)

n=1

We obtain a function of the temperature field by solving the heat conduction differential equation
2,
32 - a(j{z @
under the boundary conditions
- - Ekn exp (— B0 [1 — (9] ®)
n=l

Ul = U, = comst, )
v |17=0 = vw . (5)

The system (2)-(5) is represented in dimensionless form.,

Let us apply the Laplace — Carson integral transform to (2), whereupon we obtain
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v(p, H—0. =A(p)exp(—V p H). (6)

Let us transform condition (3)

N\ ky V' p \ VD
A(p) + EA n_____ug n .
n=| (p + ﬁ ) P ﬁn n=l F ﬁn - (7)

We solve the functional equation (7) by successive approximations., To do this, let us introduce the
provisional parameter ¢ which characterizes the degree of the approximation, and let us represent (7) as

o

S\ P VP B VD
a E:A ! ~———=§:—-—- , ®)

n=1 n=1

and let us expand the constant A(p) in powers of £
A(p) =4 (D)+EA (D) +EAL(P) + . )

_ Substituting (9) into (8) and equating coefficients of identical powers of £, we obtain the approximation
for A(p). In particular, if we limit ourselves to the first member of the series from (7) we will have

7, =v. VP o)
o : Vo
A = — U m——— y
) N7a e NPREETY a1
T — P ,
2 = TRy 6 1280 (o + 3B (12)
etc, For the k-th approximation
5 , Vi
Ay (p) = (— 1o — :
* T +B) P+ 2B) .- (p T kB [p-+ (B + 1B (13)
Correspondingly we obtain the approximation to solve the formulated problem in the transform domain
[0(p, H) — v.]o =7, (p, H), (14)
[0, By —v.]i=0,(p, H) + 0, (p, H), (15)
[o(p, H) —valo=12,(p, H) +0,(p, H) +0,(p, H), (16)
[0, H)— o]t =0, (0, Hy+0,(p, H) +0,(0, H) +...+ 0, (p, H), ar)
where o
Y (p, H) = Ay ()exp (—1'p H); (18)
vi(p, H) =2A,(p)exp (—Vp H); (19)
v (p, H) = 4, (p) exp (—V p H); 20)
% (0, H) = 4, (p) exp (—y p H). (21)
Seeking the primitive of (18)~(20) we obtain an approximation for the function vi (7, H)
v (v, H) =, { exp(—B,f) ®, (v —#) dt, (22)
[i]
o 1) == [[exp—2p VB Lo 23)
1
0
, H)y=v' (D, (c—1 ®, (1) d
v (v, H) v.,,; (T— 0 D, (1) dt 24)

ete., where
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2
exp (—— - ) 25)
cDi 6= —'—T‘fn—:”—‘, (

4 .
®,() = f exp (— 3B,5) exp [—% B — y)] I, [%— (t—y)] dy. 26)

[

We find the approximation of the desired temperature distribution function within the half-space from
the following relationships:

[U(T, H)_Um]OEUO(T’ H) =1,
oG, H)—vs], = v, (r, Hy+v,(t, H) =1,
[U(T’ H)-—UN]ZEUO(T, H) +U1(Ti H) '*' UZ(T’ H) =‘P2'

ete.

An analysis of (22)-(24) indicates the satisfactory convergence of the iteration, Presented in Figs.
1a and b are values of approximations of the temperature function yk, computed as a function of the dimen-
gionless time for the points H = 0.707 and H = 2 when Ve = 0, Vi =1, g4 = 1. It is seen from the figures
that the zero and first approximations "bracket" the second approximation, the first and second approxima-
tions "bracket® the third approximation, ete., which permits us to limit ourselves to the second approxima-
tion with sufficient accuracy for practical purposes,

1t should be noted that there are no difficulties, in principle, in obtaining the solution of the heat con~
duction problem elucidated, keeping n terms of the series in the functional equation, although the final ex~
pressions for the approximations of the temperature function are more tedious to obtain than in the case
considered when n =1,

II. Infinite Plate. The temperature of the surrounding medium is Tg. The coefficient of heat ex-
change is defined by the relationship (1). We solve the problem of internal heat exchange for a plate by an
analogous method to that expounded above, i.e., we solve the heat conduction differential equation

ov - *Fo @)
dFo X3
under the boundary conditions

% | = Bi,exp(—8,Fo) [1 — (@), |- ©8)

X | X==1 |*

' dv
— 0’

X |xeo 29)
v iFo=0 = y, = const (30)

by limiting ourselves to the first member of the series in (1).

Let us apply the Laplace —Carson transformation to (27). After using conditions (29) and (30) we ob-

tain
v(p, X) —v,=A(@)chVpX. 31)
The boundary condition (28) takes the form
i = Bi,Vp chvp+$ Bi,vp o
A(p) + Alp +8,) — Lk H 1 VP %
¢ + &, shy'p (p+8)shyp (32)

We solve the functional equation (32) by the same method as for (7). Without presenting the intermedi-
ate operations, let us give the approximation for the solution of the problem in the transform domain

[0(p, X) —volo= 1o (0, X) =y, (33)
[0, X)—vo]i =0,(p, X)+0,(p, X) =0, (34)
[0(p, X)—vpla=10,(p, X)+ v (p, X)+0,(p, X) =, (35)
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Fig. 1. Time variation of the approximations
of the dimensionless temperature at the point
H =0.707 (a) and H = 2,0 (b) of a half~space.

k
[v(p, X)—vﬂ}kEEZ’R (p, X) =@y,
Q
where B ~
Bi,V'p ch)p X,
(p+8yshyp’
—~ , 2 —_— —
5 (p, X) = — gy Bt PtV p+ 8 chYpX
¥ p+61(ij-251)Sh;'p
_ TR -
G (p, X)— oy By Pt Vp 48 cthy p+ 35 chypX

VIP+8)(p+25)(p+38)shVp

50 (p: X) :Ul;

Correspondingly, we have in the domain of the real variable

k
v Fo, X) —up)s = No, (Fo, X) =g,

where
v, (Fo, X) = Bi,v;f, (X, §,, Fo),
v, (Fo, X) = —Bi2yf, (X, 8,, 25,, Fo),
L 1
vy (Fo, X) = Bidu, f exp [— 8, (Fo—1)] 8, (7, Fo—#f,(X, 28, 38, #)dt,
and 0

Fo

f,(X, 8, Fo) — j‘exp [— 8, Fo—1)] @0(%, t> dt;

0

Fo

f. (X, 8, 28, Fo)= 5 exp[— 8, (Fo —#)] @, <—;~ Fo——t) f, (X, 28,, & dr;

0

®yfz, t) is the theta function defined by the relationship

0,z H=142 2 (— 1)% exp (— ai?k¥) cos 2mkz.

k=|

(36)

@7

38)

39)

40)
(41)

(42)

{43)
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It must be kept in mind that the series in the expression for the theta-function converges poorly for
small values of the time. This circumstance demands the expenditure of a significant amount of labor in
calculations for small Fo since in this case it is required to retain a large number of terms in the series
in (43) to obtain a sufficiently accurate result, Hence, following [2], let us obtain a solution convenient for
computations for small Fo. In particular, for the zero approximation let us transform (37) as follows:

5o, X)— BBV P chVpX | %GBy D exp[—yp(1—X)] +exp[—1 (1 +X)]

(p+8)shy p p+8, 1—exp(—2V7p)
UBLY D N _ _
= LBIE N fexp [ 71— X 2] e PO1+X-+20) . “
p+9, -
The inversion of (44) causes no difficulties
9y (Fo, X) = Bi,vf3 (X, §,, Fo), (45)

where
Fo

£, (X, 8,, Fo) zﬁij (1—exp [— 8, (Fo—1)])

1
0

\ _(1—X+2np (L X 2np
Xzo{exp[ Y J—]—exp[ T ]}dt.

Analogously transforming (38) and (39), and also keeping in mind that large values of the parameter
p correspond to small values of the time, and the coth z is practically unity for z > 2, the successive ap-
proximations for the temperature function can be obtained in a form convenient for calculations with small
Fo:

1
%V nt

v, (Fo, X) = —Bizu[f, (X, 8,, 26,, Fo),
7 exp [—8, (Fo—1)]
V n(Fo—1

(46)

v, (Fo, X) = Bi g f. (X, 26, 38, #)df,

where
Fo

exp [— 8, (Fo —{)]
f& (X, 61, 261, FO) = S
[.5 V n(Fo—1)

f(X, 26, 8 dt.

It should also be noted that the approximations considered for the temperature function of a plate turn
out to converge well only for values of the criterion Biy = 1. When Bi; > 1 the iteration turns out to be poor-
ly convergent, where the convergence is worse the larger the number Bi;. Hence, it is interesting to obtain
a solution which would converge well in the range of values of Biy > 1. To do this let us utilize the following
thermal similarity criterion:

H = hyx (0 < H<Biy), v=ah.

The solution of the heat conduction problem for a plate then reduces to solving the differential equation (2)
under the boundary conditions

du

_— =exp(— f) |1 — (g |»
3H s, p(— B [1 — (@, | 47)
du
=5 0,
O | 48)
Vlz—o = Uy = const. 49)

The Laplace ~ Carson transformation converts the boundary condition (40) into the following functional
equation

T+ A(p+ Vp ch(v'p tﬁl Bi,) - vP
)+ Ap+p) - B, sh(y pBi) p+B. e
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Fig, 2. Time variation of the approximations of the
dimensionless temperature at the point X =1 of a plate.

The method of solving the functional equation (50) and all the problems is analogous to that examined
above. Hence, without performing the intermediate operations (they are obvious), let us present the final
expressions for the functions vi (7, H)

0 (1, H)= —B(t—1]8, (—2% %T) d, 1)
11 L !
v ¢
v, (T, H)=~—§°%~ j exp [— B, (x — )] 8, (_;_ sz )f_,,(H 26,, 1) dt, (62)
. ;
% 1 et
(5, H)= g j exp [ —0] 6 5 g )it 28, 3, 3)
where
i
Fo(H, 2B, 1) — f — 2B, (¢~ 5
. 280 [ 029, ~) %(2&1, B ) % 54)
t
fo(H, 2B, 3p,, ) = j exp [~ 2B, (t—q)] X9, (%« th ]fs (A, 38,, 9)dy- (65)
[

Approximations of the temperature function on a plate surface (Fig. 2} have been computed for the fol~
lowing values of the arguments Bi; = 1.0; X = 1,0; §; = 1.0; v(') =1 on the basis of (40)~-(42).

The results of the computation show that for practical purposes (as in the case of the half~space), it
is possible to limit oneself to the second approximation. The dashed line has been computed for the case of
an invariant heat-exchange coefficient {the average during the period under consideration), The mean value
of the Biot criterion has been defined by the method customary in this case

o
Big,— = j exp(— 8,0) dr.
- [}

The computed mean value of the Biot criterion in the range 0 = Fo =< 2 is 0.432 (for 8y = 1.0},

A comparison of the results of a computation by the theory elucidated and by a method utilizing the
mean value of the Biot criterion during the period studied shows the possibility of significant error appear-
ing in this latter case,

In conclusion, let us note yet another quite important practical case of the time variation in the heat-
exchange coefficient according to the harmonic law

a(f) = —%’— 4 E (a,, cos Ot + b, sin w1,

m=1

which will be examined later,
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NOTATION

T - is the body temperature;

Te is the temperature of the heat liberating medium;
v=T/T¢;

a(t) are the heat exchange coefficients;

t is the time;

T = ah%t; a are the coefficients of temperature conductivity;

hy is the relative coefficient of heat exchange;

H=hix is the relative thermal resistivity of a layer of thickness X
kn=ao/a;p  are the complex parameters;

Bn =b/ahd;

Vi = 1=V

I4(z) are the Bessel functions of imaginary argument of the first kind;
Bi, = hR is the Biot criterion;

2R is the plate thickness;

64 =byR%/a;

Fo = at/R? are the Fourier criteria;

X =x/R is the relative coordinate;

V(j)' =1~ Ve
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